
Name	
Class	Date
231/2	
BIOLOGY	
Paper 2	
KCSE TO	P PREDICTION MASTER CYCLE 5
Instructions to Candid	ates
(a) This paper consists	s of two sections; A and B.
(b) (b) Answer all the	questions in section A in the spaces provided after each question.
(c) In section B answe	er question 6 (compulsory) and either question 7 or 8 in the spaces
provided after questio	n 8.
(d) Candidates should	answer the questions in English
For Examiner's Use	Only
1	
2	
3	
4	
5	
6	
TOTAL	

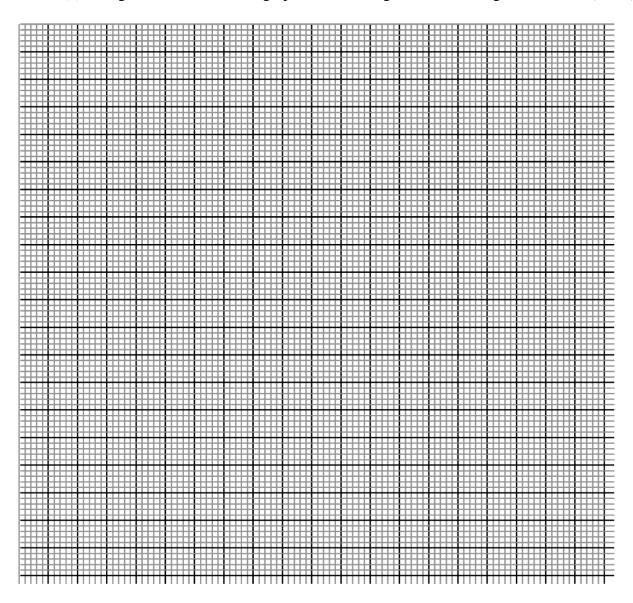
SECTION A (40MKS)

1. Study the diagram below and answer the questions that follow

(a) Identify the structure	(Imks)
(b) State the role of the part labeled R	(1mk)
c) A student took a meal of lean meat. Briefly describe the digestion	of the food substance where
this structure is found	(3mks)

(d)What is the role of the following: enterokinase and cholecystokinin in digestion?	(2mk)
Enterokinase.	
Cholecystokinin	
e) State the deficiency disease associated with lack of vitamin \mathbf{B}_2	(1mk)
2. The diagram below shows how gaseous exchange occurs across the gills in fish.	
gills Blood Cells Water	
(a) i Name the type of flow shown above	(1mk)
ii Explain the advantage of the above flow named in a(i) above.	(1mk)
(b) If the fish is removed from water it dies immediately. Explain why	(2mks)

c) Explain mechanism of gaseous exchange in frog through the skin	(4mks)
3. A freshly obtained stem from herbaceous measuring 4cm long was s two similar pieces. The pieces were placed in two different solutions of di	
petri dishes (11 and L2) for 30 minutes. The appearance after 30 minutes	
Epidermis ————————————————————————————————————	
Piece in L_1 Piece in L_2	
(a) State the type of solutions in which $\mathbf{L_1}$ and $\mathbf{L_2}$ was placed	(2mks)
(b) Account for the appearance of the pieces in solutions \mathbf{L}_1 and \mathbf{L}_2	(4mks)


(c) State two significance of the biologica	al process involved in the experiment.(2mks)
The diagram below shows structures of the	e bat wing and human arm.
Wing membrane	
	ancestral origin. State one structural similarity and
ne adaptation difference between the two.	
Structural similarity.	(1mk)
) Adaptation difference.	(2mk
,	(=:::::

(b)Give two other examples of structures in nature that show the type of evolution as in (a)	
above.	(2mks)
(c)Distinguish between the terms 'chemical evolution' and 'organic evolution'.	(2mks)
(d) What is the study of fossils called?	(1mk)
5. Pure breed of red cows and pure breed of white bulls were crossed to give F_1 calves where F_2 calves where F_3 calves where F_4 calves F_4 calves where F_4 calves F_4	nich had
a mixture of red and white coat known as roan. The F ₁ were selfed.	nolour
(a) Using letter R to represent gene for red colour and W to represent gene for white c work out the phenotypic ratio of F ₂ .	(4mks)

(b) Work out the genotypic ratio of a cross between F	F ₁ offspring and white b	ull. (3mks)
	C	1.1 (1.1)
(c) Comment on the gene(s) controlling the colour of	t coats in cattle mention	ed above. (1mk)
SECTION B (40MKS)		
Answer question 6 (compulsory) and either questi	on 7 or 8 in the spaces	provided after
question 8.		
6. An experiment was carried out to investigate the el	_	
of three pea plants. The shoots were treated as follow	-	
Shoot B – Apical bud was removed and gibberellic ac	cid placed on the cut she	oot.
Shoot C - Apical bud was left intact.		
The length of branches developed from lateral buds	was determined at regul	ar intervals. The
results obtained are as shown in the table below:		
LL		

TIME IN DAYS	SHOOT A	SHOOT B	SHOOT C
0	3	3	3
2	10	12	3
4	28	48	8
6	50	90	14
8	80	120	20
10	118	152	26

(a) Using the same axes, draw graphs to show length of branches against time. (8mks)

9th day?	(1mk)
(c) Account for the result obtained in the experiment.	(6mk
(d) Why was Shoot C included in the experiment?	(1mi
(e) What is the importance of gibberellic acid in Agricu	lture? (1mk

	•••••
7(a) Describe the process of fertilization in a flowering plant.	(14mks)
(b) State the changes that take place in a flower after fertilization.	(6mks)
8 Describe the structural adaptation of the mammalian heart to its functions	(20mks)

 •••••
 •••••
 •••••
 •••••
 •••••

THIS IS THE LAST PRINTED PAGE