Name:	Adm No:
School:	Class:
Signature:	Date:

CHEMISTRY (233/1) PAPER 1 FORM FOUR (4) Time: 2 Hours

KCSE TOP PREDICTION MASTER CYCLE 7

Instructions to candidates

- (a) Write your name, stream, and admission number in the spaces provided above.
- (b) Answer ALL the questions in the spaces provided, and working MUST be clearly shown
- (c) This paper consists of **11 printed pages**; Candidates should check the question paper to ascertain that all the pages are printed as indicated, and that no question is missing.

FOR EXAMINERS' USE ONLY

QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
1 – 28	80	

1.	A magnesium ribbon sample was heated in separate volumes of pure oxygen and air. a) In which sample was the mass of the product higher? Explain.	(2 Marks)
	b) Write the equations for the reactions in the sample with air.	
2.	Give the systematic name of the following compound and draw the structure of the forms: CH2CHCl	_
	Name	(1 Mark)
	Structure (1 M	ark)
3.	When aqueous sodium hydroxide solution was added to freshly prepared acidified iron (solution, a green precipitate was formed. When hydrogen peroxide was first added sulphate solution followed by sodium hydroxide solution, a brown precipitate was form these observations. (3 Marks)	to iron (II)
4.	Study the following nuclear reaction and complete it by giving the values of m and n	
	$\frac{232}{92} \times \Rightarrow \frac{m}{n} + 2 \times \frac{0}{-1} e^{-1} + \frac{4}{2} \text{He}$	
	m(1 Mark) n	(1 Mark)
5.	a) State Charles' Law	(1 Mark)

	b)	A certain mass of carbon (IV) oxide gas occupied 200cm Calculate the volume occupied by the same mass of gas if and the temperature raised to 30°C.	
6.	Ch	lorine gas was bubbled into as solution of hydrogen sulphic	le as shown in the diagram below.
		Boiling tube Hydrogen sulphide solution	=>
	a)	Explain the observation made in the boiling tube	(2 Marks)
	b)	What precaution should be taken in this experiment?	(1 Mark)
	<i>c</i>)	Distinguish between the bleaching action of chlorine and t	hat of sulphur (IV) oxide. (1 Mark)
7.	of	ncentrated sulphuric (VI) acid was left exposed in air for a tenth acid had risen. Why did the level of the acid in the container rise?	few days. It was found that the level (1 Mark)
			······································
	b)	How is this property useful in the laboratory?	(1 Mark)

8. The setup below can be used to dry and collect ammonia gas. Use it to answer the questions that follow.

	a) The wet red litmus paper remained red. Explain.	(1 Mark)
	b) Name the method used when collecting ammonia gas.	(1 Mark)
9.	400cm ³ of gas D diffuses from a porous plug in 50 seconds while 600cm from the same apparatus in 30 seconds. Calculate the relative molecular m	, , ,

10. Use the information in the table below on solubility to answer the questions that follow.

Salt	Solubility at	
Sait	70°C	35°C
CuSO ₄	38	28
Pb(NO ₃) ₂	78	79

b)	Calculate the mass of	of crystals formed.		(1 Mai
c)	State the salt that wi	ll be unsaturated at 3	5°C	(1 Mari
d)	How much of the s	alt in c) above woul	d be required to make a satur	ated solution at 35°
	• • • • • • • • • • • • • • • • • • • •			
Me	ethane burns in oxyge	en as shown by the eq	uation below.	
		$\mathrm{CH_4}\left(\mathrm{g}\right) + 2\mathrm{O}_2\left(\mathrm{g}\right)$	uation below. $ ightharpoonup CO_2(g) + 2H_2O(g)$	
	ethane burns in oxyge	$\mathrm{CH_4}\left(\mathrm{g}\right) + 2\mathrm{O}_2\left(\mathrm{g}\right)$	→ CO ₂ (g) + 2H ₂ O (g)	
		$\mathrm{CH_4}\left(\mathrm{g}\right) + 2\mathrm{O}_2\left(\mathrm{g}\right)$		
		$CH_4(g) + 2O_2(g)$ and energies:	→ CO ₂ (g) + 2H ₂ O (g) Bond Energy	
		CH ₄ (g) + 2O ₂ (g) and energies:	→ CO ₂ (g) + 2H ₂ O (g) Bond Energy (kJ/mole)	
		CH4 (g) + 2O ₂ (g) nd energies: Bond C - H	Bond Energy (kJ/mole) 413	
		CH ₄ (g) + 2O ₂ (g) and energies: Bond $C - H$ $O = O$	→ CO ₂ (g) + 2H ₂ O (g) Bond Energy (kJ/mole) 413 497	

A mixture containing 38g copper (II) sulphate and 78g of lead (II) nitrate in 100g of water at 70°C

	Given solid sodium carbonate, lead (II) nitrate crystals and water, explain how you can obtain a solid sample of lead (II) carbonate. (3 Marks)
13.	Calculate the volume of oxygen produced when 10g of silver nitrate was completely decomposed by heating at s.t.p. (Ag = 108 , N = 14 , O = 16 , MGV at s.t.p. = 22.4 dm ³) (3 Marks)
	A solution of hydrogen chloride gas in water conducts an electrical current, while that of hydrogen chloride in methylbenzene does not conduct. Explain. (2 Marks)
	The scheme below shows some reactions, starting with ethyne. Study it and answer the questions that follow.
	CHBrCHBr Reagent M
	HC≡CH 1 mole Substance X Pt. +
	1 mole Reagent Y V CH ₂ CH ₂ Conc. H ₂ SO ₄ Substance N
	a) Name substance i) X(½ Mark)
	ii) N

iii) M	(1/2
Mark)	
b) Ethene undergoes polymerization to form a polymer. Give an equation for name the product.	the reaction and (1½ Marks)
When 16g of ammonium nitrate was dissolved in 100cm ³ of water at 25°C, the to solution drops to 19°C.	emperature of the
a) Calculate the molar enthalpy of solution of ammonium nitrate	(3 Marks)
(N = 14, O = 16, H = 1, Specific Heat Capacity for Water = 4.2kJ/kg/specific Heat Capacity for Water = 4.2kJ	k)
b) Is the enthalpy change endothermic or exothermic? Give a reason	(1 Mark)
	• • • • • • • • • • • • • • • • • • • •

reacted with the same quantity of calcium carbonate.

a)	Which of the two curves represents the reaction of 2M concentrated h Explain.	(2 Marks)
b)	Why do the two curves flatten at the same level of production of CO ₂ ?	(1 Mark)
	the electron arrangement of ions X^{3+} and Y^{2-} are 2.8 , and 2.8.8 respectively. In which groups do X and Y belong?	(1 Mark)
	X Y	
b)	State the formula of the compound that would be formed between \boldsymbol{X} and \boldsymbol{Y}	
a)	State two ores from which sodium metal can be extracted.	(1 Mark)
b)	During the extraction, calcium chloride solid is added into the sodium chloride calcium chloride added to the sodium chloride?	oride solid. Why is (1 Mark)
c)	State two uses of sodium metal.	(2 Marks)

19.	Using and energy cycle diagram, calculate the ent given:	halpy change of formation of carbon disulphic (3 Marks)	le,
	$S(s) + O_2(g) \rightarrow SO_2(g)$	$\Delta H = -294 \text{kJ/mole}$	
	$CS_{2}\left(g\right)+3O_{2}\left(g\right) \Rightarrow CO_{2}\left(g\right)+2SO_{2}\left(g\right)$	$\Delta H = -1072 \text{kj/mole}$	
	$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H = -393 \text{kJ/mole}$	
			····

20. The table below shows tests carried out in a sample of water and the results obtained.

Sample	Results	observations
A	Addition of sodium hydroxide dropwise until excess	Whit precipitate which dissolves in excess
В	Addition of excess ammonia solution	White precipitate
С	Addition of dilute nitric (V) acid followed by barium chloride	White precipitate

a)	Identify the anion present in	barium chloride he water sample	(1 Mark)	
u)	dentity the amon present in	ine water sample	(1 Man)	
				٠.
b)	Write an ionic equation for the	e reaction in C	(1 Mark)	
				•

21. Use the following information to answer the questions that follow:

	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightarrow \operatorname{Sn}(\operatorname{s})$	$\mathbf{E}^{\theta} = \mathbf{-0.14V}$	
	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	$E^\theta = +0.34V$	
a)	Write the cell representation for the cell made up of	the two half cells	(1 Mark)
b)	Identify the reducing species		(1 <i>Mark</i>)
			•••••
c)	Calculate the E^{θ} value for the cell		(1 <i>Mark</i>)

22. The following is a reaction of an equilibrium mixture:

$$2SO_2(g) + O_2(g)$$
 \longrightarrow $2SO_3(g)$

The percentage of sulphur (VI) oxide in the equilibrium mixture varies with temperature as illustrated in the sketch graph below

a)	How does the percentage of sulphur (VI) oxide in the equilibrium mixt temperature increases? Explain. (1	ure vary as the ¹ / ₂ Mark)
b)	Is the forward reaction in the equilibrium exothermic or endothermic? Give a answer.	n reason for your ½ <i>Mark</i>)
sar	dioactive polonium (Po) with a mass number of 212 and atomic number of 84 mple of water. The water had an activity of 1000 counts per second. If the water is boiled, explain whether the activity would be affected or not.	
b)	Given that polonium resulted from bitumen (B) following emission of a beta (a nuclear equation for the decay. *Mark*)	β) particle, write (1
c)	State one medical application of radioactivity.	(1 Mark)

24.		me and give the formula of: The chief ore from which zinc is extracted	(1 Mark)
	b)	The main impurity in the ore.	(1 Mark)
	c)	The ore is concentrated by froth floatation. What is froth floatation?	(1 Mark)
25.		e atomic number of sulphur is 16. Write the electron arrangement of sulphounds	phur in the following
	<i>a</i>)	H ₂ S	,
26		SO_3^{2-}	(I Mark)
20.		ing oxidation numbers, state and explain the reducing species.	(2 Marks)

27. The setup below was used to investigate the effect of carbon (II) oxide on zinc oxide.

a)	State the observations made on the setup.	(2 Marks)
b)	Write equations for the reactions that took place.	(2 Marks)