233/3 CHEMISTRY PAPER 3

TIME: 2 HOURS 15 MINUTES

KCSE 2023 TOP PREDICTION MASTER CYCLE 1

Name	Adm No
Stream	Date
Sign	
INSTRUCTIONS TO CANDIDATES	

[a]Answer ALL questions in the spaces provided in each question.

[b] Mathematical tables and electronic calculators may be used for calculations.

[c]all working must be clearly shown where necessary.

FOR EXAMINERS ONLY

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	15	
2	13	
3	12	
Total	40	

1.	You are provided with
	• 2.0M NaoH solu
	• Sulphuric(VI) ac
	You are to:

- tion labelled B
- id solution labelled A`
- [a] Prepare a dilute solution of NaoH solution.
- [b] Determine the concentration of in moles per litre.

i.	Using a pipette 25.0cm ³ of solution B and place it into 250cm ³ volumetric flask.	
ii.	Add about 200cm ³ of distilled water and share well.	
iii.	Add more water to make up to 250cm ³ mark. Label this solution C	
[a]	Calculate the concentration of the dilute solution C in moles per litres.	2mks]

PROCEDURE 2

- Fill the burette with solution A and record the readings in the table below. i.
- Pipette 25cm³ of dilute solution C and place it into 250ml conical flask. ii.
- iii. Add 2-3 drops of phenolphthalein indicator.
- Titrate with solution A. iv.
- Record your results in the table below. v.
- Repeat the titration two or more times and complete the table. vi.

	I	II	III
Final burette reading (cm ³)			
Initial burette reading(cm³)			
Volume of solution A(cm³)			

		[4mks]
a]	Determine average volume of the acid (solution A) used.	[1mk]
b]	Determine moles of dilute solution C in the volume used.	[2mks]

[c]	Write an equation for the reaction taking place.	[1mk]
[d]	Determine the number of moles of A used.	[2mks]
[e]	Determine the concentration of A in moles per litre.	[2mks]
You a	are provided with the following	
	2M sodium hydroxide solution, solution B	
	M hydrochloric acid colution D	

- 2.
 - 2M hydrochloric acid, solution D

You are required to determine the molar enthalpy of neutralization of the acid using sodium hydroxide.

PROCEDURE

- [i] Measure out 20cm³ of acid into a clean plastic beaker.
- [ii] Record the temperature of this solution in the table below
- [iii] Measure 5cm³ of sodium hydroxide and add it to the hydrochloric acid.
- [iv] Stir with the thermometer and record the maximum temperature reached.
- Repeat the above procedure adding 5cm³ portions of sodium hydroxide until [v]the total volume of the solution is 50cm³.

Volume of acid(cm3)	20	20	20	20	20	20	20
Volume of NaoH added cm ³	0	5	10	15	20	25	30
Temperature(° \mathcal{C})of solution							

[3mks]

You are required to:

[a]. Plot a graph of temperature rise against sodium hydroxide added. [3mks]

[b]From your graph determine:

assume density of solution is 1gcm⁻³)

[i]	maximum temperature change.	[1mk]
[ii]	the volume of NaOH that is required for complete neutralization	[1mk]
[iii]	Calculate the molar enthalpy of neutralization for this reaction. (C=4.2J/g/z	<i>K</i>)

[2mks]

[b]	Add sodium hydro	oxide to the first po	rtion drop wise while obse	erving till in ex
OBS	SERVATION	(1mk)	INFERENCE	(1mk
[a]	solution in to three	portions.	add 5cm ³ of water and sha	
You a	are provided with sol	lid N carry out the	tests below and record you	ur observation
[iii]		theoretical value. C	zation is -57.2kj/mol-1.Cor Give the reasons for any dif	
		•••••		
			• • • • • • • • • • • • • • • • • • • •	

OBSERVATION	(1mk)	INFERENCE	(1mk)
d] Add four drops of p	otassium iodide so	lution to the third port	cion.
OBSERVATION	(1mk)	INFERENCE	(1mk)
[e] Add three drops of a	acid barium nitrate	e to the fourth followed	by 5 drops of nitric
=	ncid barium nitrate (2mks)	to the fourth followed INFERENCE	by 5 drops of nitric
acid.			

Add ammonia solution to the second portion drop wise until in excess.

[c]