Name Index Number.....

Admission Number Class

FORM 4 CHEMISTRY PAPER 4 (233/3) TIME: 2¼ HOURS

KCSE TOP PREDICTION MASTER CYCLE 6

Instruction to the candidates

- a) Write your Name and Index Number, Admission Number and Class in the spaces provided at the top of this page.
- b) Answer all the questions in the spaces in the spaces provided in this paper using English.
- c) KNEC Mathematical tables and silent electronic calculators may be used.
- d) All working MUST be clearly shown where necessary.

Questions	Maximum score	Candidate's Score
1	11	
2	09	
3	20	
	40	

For Examiner's use only

This paper consists of 10 printed Pages and candidates should check the question paper to ensure that all the pages are printed as indicated and no questions are missing.

- **1.** You are provided with:
 - Solution A, potassium iodate solution.
 - Solution B, acidified sodium hydrogen sulphite solution.
 - Solution C, starch indicator.
 - Stop watch.

Compiled and Distributed by Kenya Educators Consultancy, P.O.BOX 15400-00500, Nairobi. Tel 0724333200 E-mail <u>kenyaeducators@gmail.com</u>. ORDER MARKING SCHEMES AT <u>www.kenyaeducators.co.ke</u> or Contact 0724333200/0768321553/0795491185

• Distilled water.

You are required to find out the **effect** of **concentration of potassium iodate**, **A** on the **rate of reaction** with acidified sodium hydrogen sulphite, **B**.

NB: The end point of reaction of potassium iodate with acidified sodium hydrogen sulphite is indicated by the formation of a blue colored complex using starch indicator.

Procedure 1:

Step 1

• Label 5 test tubes as 1, 2, 3, 4 and 5 and place them in a test tube rack.

Step 2

Using a 10 cm³ measuring cylinder add 5 cm³ of acidified sodium hydrogen sulphite, solution B to each of the test tube in the rack.

Step 3

• Using a burette pour **10 cm³** of potassium iodate solution to the **first** test tube.

Step 4

Add 8 cm³ of potassium iodate solution to the second test tube, 6 cm³ to the third test tube, 4 cm³ to the fourth test tube and 2 cm³ to the fifth test tube.

Step 5

Using a 10 cm³ measuring cylinder add 2 cm³ of distilled water into the second test tube,
4 cm³ to the third test tube, 6 cm³ to the fourth test tube and 8 cm³ to the fifth test tube.

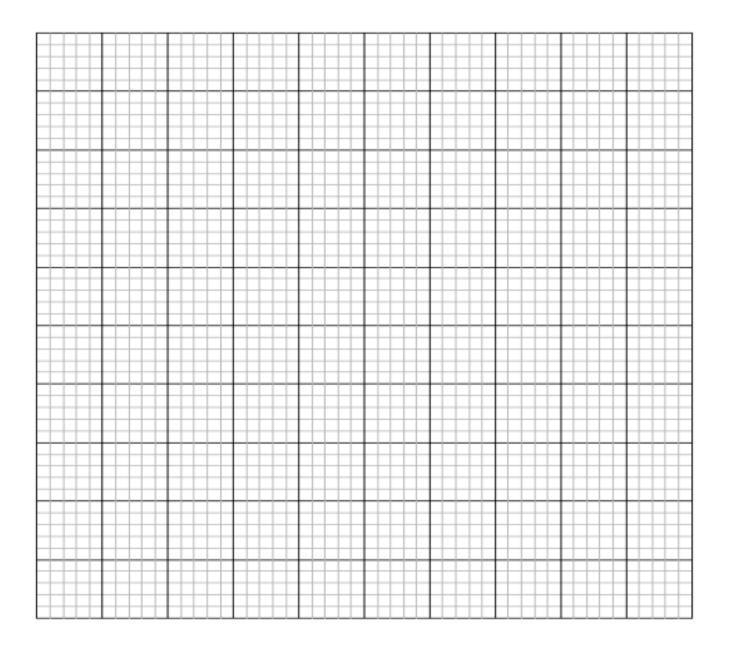
Step 6

• Using a 10 cm³ measuring cylinder add 10 cm³ of solution B into a 100 cm³ beaker, add 3

Compiled and Distributed by Kenya Educators Consultancy, P.O.BOX 15400-00500, Nairobi. Tel 0724333200 E-mail <u>kenyaeducators@gmail.com</u>. ORDER MARKING SCHEMES AT <u>www.kenyaeducators.co.ke</u> or Contact 0724333200/0768321553/0795491185

drops of **solution C** and shake well. To this mixture add quickly contents in the first test tube and start a stopwatch immediately. Shake the mixture and note the time taken for the blue color to appear. Record the time taken in **table I.**

Step 7


• **Rinse** the beaker and **repeat** procedure in **step 6** using the other solutions prepared in **step 4** above and complete the **table I**.

<u>Table I</u>

Experiment	Volume of Sodium hydrogen sulphite (NaHSO ₃) used (cm ³)	Volume of distilled water used (cm ³)	Volume of potassium iodate (KIO₃) used in (cm³)	Time taken to change color (secs)
1	5	0	10	
2	5	2	8	
3	5	4	6	
4	5	6	4	
5	5	8	2	

(3 marks)

(a) On the grid below plot a graph of time taken for the color change against volume of aqueous potassium iodate used.(3 marks)

(b) (i) From your graph determine the time taken for the blue colour to appear if 7cm³ of

	aqueous potassium iodate was used.	(1 mark)	
	(ii) Calculate the volume of distilled water requi	red if 7 cm ³ of aqueous potassium ioc	late
	was used.	(1 mark)	
(c)	On the graph sketch the graph that could be exp	pected if the above experiments were	done
	at a higher temperature. Explain.	(1 mark)	
(d)	How does the volume of potassium iodate solut	ion A, affect its rate of reaction with	
	acidified sodium hydrogen sulphite B ? Explain yd	our answer.	
	(2 marks)		

2. You are provided with:

- Solution D, which is 0.05M acidified potassium manganate (VII) solution (KMnO₄).
- **Solution E**, containing 5.0g/l of a dibasic acid, H₂M.2H₂O

You are required to determine the **concentration** of dibasic acid H₂M.2H₂O, **solution E** and then the **formula mass** of **M**.

Procedure II

- **1.** Fill the burette with **solution D**.
- Using a clean pipette, place 25 cm³ of solution E into a clean conical flask. Heat this solution to about 70°C.
- **3.** Titrate using **solution D** until a permanent pink colour just appears. *Shake* thoroughly during titration.
- 4. Record the reading in table II below.
- 5. Repeat the titration one more time to complete the table below.
- (a) Complete the **table II** below.

<u>Table II</u>

Titration	I	Ш	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution D used (cm ³)			

(3 marks)

(b) **Determine** the average volume of **solution D** used. (1 mark)

.....

(c)	Calculate:
	(i) The number of moles of manganate (VII) ions in the average volume of solution B used
	above. (1 mark)
	(ii) Given that 2 moles of manganate (VII) ions react with 5 moles of dibasic acid $H_2M.2H_2O$.
	Calculate the number of moles of the dibasic acid $H_2M.2H_2O$ in the 25 cm ³ of solution E.
	(1 mark)
	(iii) The concentration of solution E in moles per litre. (1 mark)
	(iv) Calculate the formula mass of M in the dibasic acid H ₂ M.2H ₂ O. (H = 1, O=16).
	(iv) Calculate the formula mass of W in the dibasic acid $H_2(VI, 2H_2O)$. (H = 1, O=16). (2 marks)
	(=
•••••	
	3. (a) You are provided with solid F. Carry out the tests below. Write your observations
	and inferences in the spaces provided.

 Place about one third of solid F in a clean dry test-tube and heat it strongly.

Observations	Inference
(1 mark)	(1 mark)

(ii) Place the remaining **solid F** in a boiling tube. Add about 10 cm³ of

distilled water. Shake the mixture thoroughly for about one minute.

Filter and divide the filtrate into four portions.

Observations	Inference

(1 mark)

(1 mark)

I. To the first portion, add 2 drops of **phenolphthalein indicator**.

Observations	Inference
(1	(1

(1 mark)

(1 mark)

II. To the second portion, add 2 cm³ of **dilute sulphuric (VI) acid.**

Observations	Inference
(1 mark)	(1 mark)

III. To the third portion, add 3 cm³ of **aqueous potassium iodide**.

Observations	Inference
(1 mark)	(1 mark)

IV. To the fourth portion, add **dilute ammonia solution** drop wise

until excess

Observations	Inference
(1 mark)	(1 mark)

b) You are provided with **solid G**. Carry out the following tests and record your

observations and inferences in the spaces provided.

 i) Using a metallic spatula, take one third of solid G and ignite it using a Bunsen burner flame.

Observations	Inference

(1 mark)

(1 mark)

ii) Place the remaining solid G in a boiling tube. Add about 10cm³

distilled water. Shake the mixture well. Divide the mixture into two

portions.

Observations	Inference
	14 11

(1 mark)

(1 mark)

I.To about $4\mbox{cm}^3$ of the solution, add solid sodium carbonate and

shake well.

Observations	Inference
(1 mark)	(1 mark)

II. To about 4 cm³ of the solution, add 3 drops of **acidified potassium dichromate**

(VI). Warm the mixture.

Observations	Inference

(1 mark)

(1 mark)

LAST PRINTED PAGE