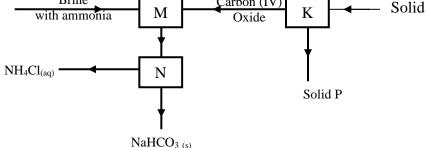
NAME	CLASS	ADM	SIGN
CHEMISTRY			
FORM FOUR			
THEORY) PAPER ONE			
TIME: 2 HOURS			

KCSE TOP PREDICTION MASTER CYCLE 1

INSTRUCTIONS TO STUDENTS:

- Write your **name** and **adm** in the spaces provided **above**.
- > Sign and write the date of examination in the spaces provided above.
- Answer **ALL** the questions in the spaces provided.
- ➤ All working **must be** clearly shown where necessary
- ➤ Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- > Candidates should answer the questions in English.


For Examiner's Use Only

Questions	Maximum Score	Candidate's Score
1 – 29	80	

1. The diagram below shows part of Solvay process.

Brine Carbon (IV)

with ammonia M Oxide K

(a)	Name	solid P	(1	Mark)

(b) State the process taking place in chamber N. (1mark)

(c) State two uses of calcium chloride which is a by-product in this process. (1 mark)

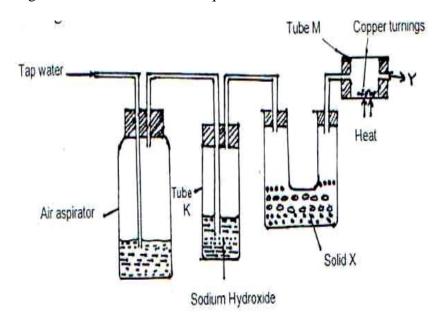
.....

2. 100cm^3 of methane gas diffused through a porous partition in 40 seconds. How long would it take 90cm^3 of ozone gas to diffuse through the same partition? C = 12, H = 1, O = 16 (3marks)

3. Ammonia is produced in large scale by Haber process.

	(i) Write an equation	for the formation of ammonia gas.	(1 mark)	
	(ii) State two optimus (2 marks)	n conditions for obtaining a high yield	of ammonia in the process.	
1.	CHBrCl R HC≡Cl	HBr Leagent M H	ne. Study it and answer the questions that fo	llow.
	(a) Name substance 2	ζ and N (<i>1mark</i>)		
	(b) Name reagent M	(1 Mark)		
•••	(c) Ethene undergoes product. (i) Equation;	polymerization to form a polymer.	Give an equation for the reaction and nam	e the
	(ii) Name:		(1mark)	

5. The curves below represent the volume of carbon (IV) oxide gas evolved once 2M(concentrated) hydrochloric acid was reacted with 100g of powdered calcium carbonate and also when 1M concentrated hydrochloric acid was reacted with the same quantity of carbonate. Time (sec) (i) Which of the two curves represents the reaction of 2M concentrated HCl with powdered calcium carbonate. Give a reason. (2 marks) (ii) Why do the two curves flatten at the same level of production of CO_2 (1 mark) 6. Study the following equilibrium equation. $2X_2(g) + Y_{2(g)}$ $2X_2Y_{(g)}$ $\Delta H = -197 \text{Kj/mol}$ Suggest two ways of increasing the yield of X_2Y . (1 mark)


7.					-		se it to answer the questions that follow. The
	letters do not repre	A	B		D	E E	7
	Element Atomic number		13	14	15	16	
	Which of the above				13	10	
					the sm	allest ionic	c radius? Explain(2 marks)
	(a) A metame cien	iiciit wiiic	211 1011113	ions with	i the sim	anest rom	cradius: Explain(2 marks)
						• • • • • • • • • • • • •	
	(b) A non metallic	element	with the	largest at	omic siz	ze? Explai	in. (<i>1mark</i>)
						• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		
0	771 1' 1 1	1	1 .		1 4	1 4	4
8.	The diagram below	v shows a	i burning	jiko. Stu	dy it an	d answer t	the questions that follow.
				1 AAA),	
				10.11	V.	A	
				<u> </u>	. ~~		
			10	2000	0,9		
		llogo of		2000	$\sim \sim$	/ T B	
		Mass of Burning	charcoal	\approx ∞	3,00	/1'.	
			1	\mathcal{L}_{0}	5 ° /	} C	
			,	/	1	-	
			/		-	١	
			- /		5	Air Air	
			/			Ī	
	(a) Write the equat	tion for tl	ne reactio	on taking	place in	region A	. (1 Mark)
	· / 1			8	1	<i>U</i> = 1-	

(1 *Mark*)

(b) Name the gas produced at region B.

(c) State ONE use of the gas named in (b) above.	(1 Mark)	

9. Study the diagram below and answer the questions that follow.

(i) What is the purpose of passing tap water through the air aspirator? (1 Mark)

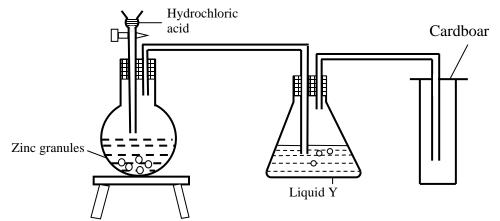
.....

(ii) State and explain the observation that would be made in tube M after sometime. (1 Mark)

10. 15g of sodium chloride was dissolved in 120cm ³ of disti solution in moles per litre. (Na = 23, Cl = 35.5) (3Mar	
11. (a) State Boyle's Law.	(1 Mark)
(c) The volume of a gas at 30°C and 780mmHg is 400 (3marks)	Ocm ³ . What will be its volume at 50 ⁰ C at 600 mmHg.
12. Sulphur exhibits allotropy. (a) What is allotropy?	(1 Mark)
(b) Name the <u>two</u> allotropes of sulphur.	(2 Marks)

	powder was placed in a deflagrating spoor State the observation made.	n and heated on a Bunsen Burner. (1 Mark)	
(ii)	The product obtained was dissolved in wate	r. Comment on the PH of the solution for	med .(1 <i>Mark</i>)
13. 0.318g of a	an oxide of metal M was completely reduced an oxide of the metal oxide. ($M = 63.5$, $O = 10$)	uced by hydrogen gas to 0.254g of me	
	following reagents: Solid sodium Carbonate O Carbonate can be prepared in the laborator		now a sample
15. Volume of l	liquids can be measured using a pipette; me measuring 29.1cm ³ of liquid.		ch one would

	Study the information Substance	n the table and answer the questions below. Solubility g/100g water	
	V	126	
	W	ample of substance V could be obtained from a so	
•••			
7. l	Use the bond energies $H_{2(g)} + Cl_{2(g)} \rightarrow 2$		(3 marks)
	Bond H – H	Energy (Kj/Mol) 435	
	C1 – C	1 243	
		/31	
	H – C	431	
	H – C	was found to be 5.7. An agricultural officer reco	mmended addition of lime. (2 Marks)

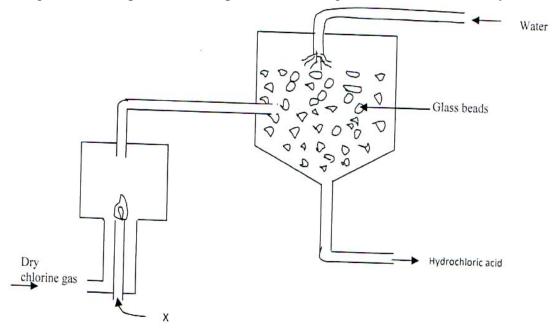

19. The electronic configuration of ions X ²⁺ is 2.8 while that of ion Y ⁻ is 2.8.8. (a) Write down the electron arrangement of the atoms of X and Y	(2 Marks)
(b) Compare the atomic radii of the two elements.	(1 Mark)
(c) Give the name of the chemical family to which element X belongs	(1 Mark)
20. Use the information below to answer the questions that follow. C _(s) + O _{2(g)} → CO _{2(g)} ΔH ₁ = -393 KJ/mol H _{2(g)} + ½ O _{2(g)} → H ₂ O _(l) ΔH ₂ = -286 KJ/mol C ₄ H ₁₀ + 6½ O _{2(g)} → 4CO _{2(g)} + 5H ₂ O _(l) ΔH ₃ = -2877KJ/mol (a) Calculate the molar enthalpy of formation of butane (C ₄ H ₁₀) from its elemants (3mks)	ments in their normal states.

21. (a) (i) A student found a colourless liquid in the laboratory which he suspected to be water. Describe a chemical test the could have performed to confirm that the liquid is water. (2 Marks)

(ii) What other test could he have done to prove that the liquid is pure water?(1 Mark)
22. The diagram below shows that the set-up that was used to prepare and collect a sample of nitric acid potassium nitrate & sulphuric acid acid acid (a) Give a reason why it is possible to separate nitric acid from sulphuric acid in the set-up. (1 Mark)
(b) Name another substance that can be used instead of potassium nitrate.(1 Mark)
(c) Give one use of nitric acid.(<i>1mark</i>)

23. The structure of water molecules can be represented as shown below. (i) Name the bond type represented by letter X and W. (1 *Mark*) (ii) Relative molecular mass of methane and water are almost similar, however the boiling of water is 100°C while that of methane is -161°C. Explain. (1 *Mark*) 24. Diamond and graphite are allotropes of carbon. In terms of structure and bonding, explain why? (i) Diamond is used in drilling of hard rocks. (1 *Mark*) (ii) Graphite is a lubricant. (1Mark)

25. The set up was used to prepare dry hydrogen gas. Study it and answer the questions that follow.


(i) Is set-up used to prepare the gas correct? Give reason.	(1 Mark)	
(ii) What would be liquid Y?(<i>Imark</i>)		
(iii) Give two physical properties of hydrogen gas		

26. Given element W has atomic number 14 and consists of isotopes as shown below.

Isotope A B C Isotope mass 28 29 30

Determine the relative atomic mass of W

27. The diagram below represents a set up used for the large scale manufacture of hydrochloric acid.

(a) Name substance X (1Mark)

(b) What is the purpose of the glass beads? (1 Mark)

.....

(c) Give one use of hydrochloric acid (1Mark)

28. A mixture contains Iron (III) Chloride, calcium chloride and iron filings. Describe how one can separate

and recover the substances in the mixture.(3marks)

29. The structure below represents two cleansing agents A and B. Which cleansing agent would be suitable for washing in water containing calcium chloride? Give a reason.(2marks)
$R \longrightarrow OSO_3 Na^+ \qquad R-COO Na^+$
A B