232/3 PHYSICS PAPER 3 (PRACTICAL) Time: 2¹/₂ hours KCSE 2023 TOP PREDICTION MASTER CYCLE 1

Name:Stream

Candidate's Signature: Date:.....

Instructions to Candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of the examination paper.
- (c) Answer ALL the questions in the spaces provided in the question paper.
- (d) ALL working **MUST** be clearly shown where necessary.
- (e) Mathematical tables and silent electronic calculators may be used.
- (f) Candidates should check the paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (g) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.
- (h) This paper consists of 11 printed pages
- (i) Candidates should answer all the questions in English.

For Examiners' Use Only:

QUESTION	MARKS	CANDIDATE'S SCORE
QUESTION 1	20	
QUESTION 2 PART A	8	
QUESTION 2 PART B	6	
QUESTION 2 PART C	6	
GRAND TOTAL	40	

Question 1

You are provided with the following apparatus:

- Rectangular glass block
- Two plain papers
- Four optical pins
- Four paper pins or thumb pins
- Protractor
- Half meter rule

PART A

PROCEDURE:

a) Place the glass block on the plain paper on its largest area, trace it's outline and mark it's sides ABC and D. Mark the point P₀ on the center of side BC as shown in Figure 1 below.

b) Measure the breadth of the glass block.

```
b =....cm
```

(1 mark)

c) Replace the glass block and fix an object pin at P_0 such that the pin lies along the surface of the glass block.

- d) With your eye on the side AD closer to A, fix pins P₁ and P₂ such that they are in line with the image P_i of P₀ as seen from the side AD through the glass block.
- e) From the same side AD closer to D, fix pins P₃ and P₄ such that they are in line with the image Pi of P₀ seen through the glass block.
- f) Remove the glass block and join P_1 and P_2 , and P_3 and P_4 to meet at P_i .
- (Hand in the outline with the question paper.) (1 mark)

PART B

- a) Trace the outline of the glass block again on the second plain paper and label it ABCD as shown in Figure 2.
- b) Construct a normal on the side AB approximately 3cm from A and measure angle of incidence i =35^o (secure the plain paper using paper pins).
- c) Replace the glass block on the outline and fix pins P_1 and P_2 along the line of 35^0 .
- d) Viewing from the sides CD through the block, fix pins P₃ and P₄ such that they appear in line with the images of P₁ and P₂.
- e) Join P₃ and P₄ and join x and y.

- f) Extend the line P_1 and P_2 to obtain lateral displacement as shown in the figure and measure the lateral displacement **d** and angle r^0 .
- g) Tabulate your results.
- h) Repeat the procedure in (i) to (vi) for angles of incidence 45^0 , 55^0 , 65^0 and 75^0 .

(Hand in the plain paper on which you have done your experiment together with the exam paper)

marks)

i ⁰	35	45	55	65	75	
r ⁰						
d(cm)						
	•	1			L. L	(5 mark

i) Plot a graph of **d** (**cm**) against \mathbf{r}^0

(2

(5 marks)

j) From your graph:

i)	Determine the value \mathbf{r}^0 where the lateral displacement d equals to the breadth \mathbf{b} of the								
	block.								
	$\mathbf{r}^0 = \dots$	(1 mark)							
ii)	Given that $\mathbf{k} \sin \mathbf{r}^0 = 1$, determine the value of \mathbf{k}	(2 marks)							
		•••••							

Question 2

PART A

- A glass beaker
- A metal solid
- Some water
- Source of Heat
- A piece of cotton thread
- A plastic beaker wrapped with tissue paper on the outside.
- A thermometer
- Liquid L
- Measuring balance to be shared

Proceed as follows:

(a) Fill the glass beaker with the water provided and place it on the heat source.

Use the piece of thread to carefully lower the metal solid to the bottom of the beaker. Heat the water to its boiling point. Use the thermometer to measure its point.

	Boiling point of water =Kelvin	(1 mark)
b)	Find the following measurements using appropriate instruments	
	Mass of the metal solid M_s = g	(½ mark)
	Mass of the wrapped empty plastic beaker	
	M ₁ g	(1 mark)
	Use the plastic beaker to measure 240ml of liquid L, hence find the joint mass of th	e plastic

beaker and its content **liquid L**,

 $\mathbf{M}_2\!=\!\!\ldots\!\!\ldots\!\!g$

(½ mark)

	Initial temperature of liquid L , T ₁ =Kelvin	(1 mark)
c)	At boiling point of water, quickly transfer the metal solid into liquid L , stir well and metatemperature of the mixture immediately.	asure the
	Temperature of the mixture	
	$T_2 = \dots$ Kelvin	(1 mark)
d)	By using the measurements taken in parts (a), (b) and (c) as well as the equation provide determine the specific heat capacity of liquid L.	d below,
	(Take S.H.C. of metal solid = $480 \text{Jkg}^{-1}\text{k}^{-1}$ and S.H.C. of plastic = $359 \text{ Jkg}^{-1}\text{k}^{-1}$)	
	(Heat lost by metal solid) = (heat gained by liquid L) + (heat gained by plastic beaker) (3 marks)

PART B

You are provided with the following apparatus:

- A nichrome wire
- A 20g mass
- A meter rule
- A test -- tube
- A retort stand, boss, and clamp

Proceed as follows:

- c) Remove the coil from the test-tube. Straighten the first and the last turns of coil. Bend one end to make a hook.
- d) Count and record the number, N, of complete turns remaining on the coil. N =.....
- e) Measure and record the distance **h**₁ between the end turns of the coil as shown on the **Figure 1** below.

f) Load a 20 g mass on the coil as shown in Figure 2 above. Measure and record the distance, h₂, between the end turns of the coil.

 $\mathbf{h}_2 = \dots$

(½ mark)

(1 mark)

g) Determine the spring constant **K** in S.I units. (1 mark)

h) Obtain the constant, **P**, for the wire from the expression:

(2 marks)

$P = \frac{4mgR^3}{Kr^4}$

Where: **m** is the mass used, **g** is acceleration due to gravity ($g = 10m/s^2$),

$$\mathbf{R} = \underbrace{\mathbf{L}}_{2\pi\mathbf{N}} \qquad \text{and } \mathbf{r} = \frac{\beta}{2\pi\mathbf{N}}$$

PART C

You are provided with the following:

- Two cells
- A 2.5 V torch bulb in a bulb holder
- 10 Connecting wires
- Switch
- Ammeter (0-3A),
- Voltmeter (0-5 V)
- Two cell holders

PROCEDURE 1

PROCEDURE 2

• Connect the circuit as shown in figure below

c) Read and record the voltmeter reading V ₃	
V3	(½ mark)
• Put on the switch. Take note of the brightness of the bulb d) Read and record the voltmeter and ammeter readings.	
V4	(½ mark)
A2	(½ mark)
e) Compare the values of V_1 and V_3	(1 mark)
f) Make a conclusion on (e) above	(1 mark)
g) In which set up does the bulb light for a longer time? Explain in terms of A_1 and A_2	(1mark)

	••••	••••	 ••••	• • • • •	• • • • •	••••	••••	••••	••••	••••	••••	 ••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••	••••	••••	• • • • •	• • • • •	••
• • • • •	••••	••••	 ••••	• • • • •	• • • • •	••••	••••	••••	••••	• • • •	• • • •	 ••••	••••	••••	••••	••••	••••			••••	••••	• • • •	••••	••••	• • • • •		••
		••••	 ••••	• • • • •		••••	••••	••••	••••	••••	• • • •	 	••••	••••	••••	••••				••••	••••	••••					•••