Name:	Index no
School:	Candidate's sign
Date:	
233/3	
CHEMISTRY	
PAPER 3 (PRACTICAL)	

TIME: 2 1/4 HOURS

INSTRUCTIONS TO CANDIDATES:

- (a) Write your name and index number in the spaces provided.
- (b) Sign and write the date of examination in the spaces provided
- (c) Answer ALL the questions in the spaces provided in the question paper
- (d) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ½ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you may need.
- (e) All working MUST be clearly shown where necessary.
- (f) Mathematical tables and electronic calculators may be used.
- (g) Candidates should check the questions to ascertain that all pages are printed as indicated and that no questions are missing.

For Examiner's Use Only:

Question	Maximum score	Candidates score
1	22	
2	8	
3	10	
Total score	40	

1. You are provided with:

- A monobasic acid HA, solution J.
- Sodium carbonate solution, solution Q, containing 1.325g in 250cm³ of solution.
- Solution R, containing 15.75g of M(OH).8H₂O per litre.
- -Screened methyl orange indicator.

You are required to:

- Standardize solution J.
- Determine the relative atomic mass of element M in M (OH)₂. 8H₂O.

Procedure 1

Fill the burette with solution J. Pipette 25cm^3 of solution Q into a clean 250ml conical flask and add 2-3 drops of screened methyl orange indicator. Titrate this solution with the solution in the burette and record your results in table 1 below. Repeat this procedure and complete the table. **Retain solution J in the burette for use in procedure II**.

Table 1

Titre	I	II	III
Final burette reading (cm³)			
Initial burette reading (cm³)			
Volume of J used (cm³)			

(4	mar	ks
----	-----	----

a) Calculate the average volume of solution J used.	(1 mark)

b) Determine the concentration of solution Q in moles per litre (Na=23, C=12, O=16	(1 mark)
c) (i) Determine the number of moles of the monobasic acid solution, HA, that are in the	
averaged value calculated in (b) above.	(1 mark)
(ii) Determine the concentration of solution J in moles per litre.	(1 mark

Procedure 2

- Using a 25cm³ measuring cylinder, transfer 25cm³ of solution R into a clean 250ml conical flask. Using a 100ml measuring cylinder, transfer 75cm³ of solution Q into the flask with solution R. Boil the mixture for about 5 minutes. After cooling filter into a conical flask and transfer the filtrate into a clean 100ml measuring cylinder and add distilled water to make exactly 100cm³ of solution. Label this solution as solution S.

Pipette 25cm³ of solution S into a conical flask and titrate it with solution J using 2 drops of screened methyl orange indicator. Record your results in table 2 below. Repeat this to complete the table.

Table 2

Titre	I	II	III	
Final burette reading (cm ³)				
Initial burette reading (cm³)				
Volume of J used (cm ³)				
			(4	marks)

d) Calculate the average volume of solution J used.	(1mark)
e) Determine the number of moles of:	
(i) The monobasic acid, HA, in the average volume.	(1 mark)
(ii) Sodium carbonate in 25cm³ of solution S.	(1 mark)
(iii) Sodium carbonate in 75cm ³ of solution S.	(1 mark)

iv) Sodium carbonate in the original 75cm ³ of solution S.	(1 mark)
v) Sodium carbonate that reacted with solution R.	(1 mark)
vi) M (OH) $_2$. 8H $_2$ O in 25cm 3 of solution R. (1 mole of M (OH) $_2$. 8H $_2$ O reacts with one mole of sodium carbonate)	(1 mark)
f) Determine (i) the concentration of solution R in moles per litre.	(1mark)
(ii) the relative formula mass of M(OH) ₂ .8H ₂ O.	

(iii) the relative atomic	mass of N	M (O=16.0, H=1.0)		(1mark)
2. You are provided v Solid P, 2.0 g of a		$\operatorname{cid} \operatorname{H}_2 X$.		
You are required to	determi	ne the molar heat of solu	ition of solid P.	
PROCEDURE				
and record it in the tal	ble below	into a 100ml beaker. Mov. Add all the solid P at odissolves. Measure the	once and stir the mixtur	e carefully with the
F' 1. (0C]	
Final temperature (°C	(.)		_	
Initial temperature (°	C)		_	(3 mks)
a) Determine the	change i	in temperature, ΔT .		(1 mk)
b) Calculate the:		ange when H_2X dissolve tion is $4.2~Jg^{-10}C^{-1}$ and σ		heat capacity of (2 mks)
ii)	number H ₂ X is 1	of moles of the acid tha 126)	t were used. (Relative f	Formula mass of (1mk)
iii)	molar h	eat of solution, ΔH , of the	ne acid H ₂ X.	(1mk)

3. You are provided with solid \mathbf{G} . Place all solid \mathbf{G} in a boiling tube. Add distilled water and shake. Divide the resulting solution into three portions.

Inferences	Observations
(½ mk)	(½ mk)

i)To the first portion add drops of 2M sodium hydroxide.

Inferences	Observations
(½ mk)	(½ mk)
(½ mk)	(½ mk)

ii)To the second portion dip a metallic spatula in the solution and burn it directly on a non-luminous flame.

Inferences	Observations
(1/1-)	(1/1-)
(½ mk)	(½ mk)

iii)To the third portion add three drops of barium nitrate solution followed by 2cm³ of 2M hydrochloric acid.

Inferences	Observations
(½ mk)	(½ mk)

iv) To the fourth portion add three drops of acidified potassium dichromate (VI) solution.

Inferences	Observations
(1/2 m/z)	(14 mls)
$(\frac{1}{2} \text{ mk})$	(½ mk)

b)You are provided with solid **F.** Carry out the tests below and record your observations and inferences in the spaces provided

(i) Using a metallic spatula, heat half of solid F in a non-luminous bunsen burner flame .

Inferences	0bservations
(½ mk)	(½ mk)

(ii) Put a half spatula	endful of solid F into a boiling tube. Add about 10d	cm³ of
distilled water and sh	nake.	

Inferences	Observations
(½ mk)	(½ mk)

Divide the resulting solution from a(ii) above into two portions

(i) To the first portion, 2 - 3 drops of universal indicator and determine its pH.

Inferences	0bservations
(½ mk)	(½ mk)

(ii) To the second portion, add two drop of acidified potassium Manganate (VII) solution and shake.

Inferences	Observations
(14 mlr)	(1/2 mls)
(½ mk)	(½ mk)

(c) Put half spatula endful of solid **F** into a boiling tube and add 5 drops of ethanol followed by 2 drops of concentrated sulphuric (VI) acid.warm the mixture.

Inferences	Observations
(½ mk)	(½ mk)

